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Abstract

This paper describes the characteristics of fluid forces and wake patterns of a circular cylinder oscillating in the

streamwise direction in a cross-flow, on the basis of precise measurements and flow-visualizations in forced-oscillation

tests in a water tunnel at subcritical Reynolds numbers. The added mass and added damping coefficients of a circular

cylinder in a streamwise oscillation were calculated. The results of the forced-oscillation tests confirmed that two

reduced-velocity ranges with negative added damping exist. The two ranges agree well with the two streamwise

excitation regions observed in the free-oscillation tests in several previous studies. The added mass coefficient for the

streamwise vibration varies greatly, depending on the reduced velocity, and that can affect the dynamic behavior of the

streamwise vibration under low mass-ratio conditions. Furthermore, the mean drag coefficient attains its maximum at

the reduced velocity between the first and second excitation regions where the added damping coefficient reaches its

local maximum. This suggests that the increase in the mean drag coefficient induced by the formation of alternate

vortices magnifies the fluid damping effect and contributes to the damping region between the first and second

excitation region.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Vortex-induced vibrations (VIV) of a circular cylinder in a cross-flow, which has been one of the most challenging

issues for a number of researchers, is also of practical importance for maintaining the integrity of various engineering

structures subjected to flow. A number of studies conducted on VIV have been comprehensively reviewed by Sarpkaya

(1979, 2004), Bearman (1984), Blevins (1990), Griffin and Hall (1995) and others.

While most of these studies concern VIV in the transverse flow direction, Wooton et al. (1972) and King et al. (1973)

reported that VIV of a circular cylinder in the streamwise direction can occur under low mass-damping conditions.

Naudascher (1987) reviewed in depth flow-induced streamwise vibrations of various kinds of cylindrical and

axisymmetric bodies. In addition, intensive investigations into the streamwise vibration have been continued by several

Japanese researchers (Okajima et al., 2001, 2002; Nakamura et al., 2001; Sakai et al., 2001). These investigations were in
e front matter r 2005 Elsevier Ltd. All rights reserved.
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response to the sodium leakage incident at the prototype fast breeder reactor ‘‘Monju’’ arising from damage to the

thermowell caused by a flow-induced streamwise vibration (Morishita and Dozaki, 1998).

According to King et al. (1973) and Okajima et al. (2002), the streamwise vibration is excited in two flow velocity

regions separated by Vr � 2:5; Vr is the reduced velocity defined by Vr ¼ U=ðf ndÞ, where U is the incident flow

velocity, f n is the natural frequency of a cylinder, and d is the cylinder diameter. In the lower velocity region of

Vr ¼ 1:2–2.5 (called the ‘‘first excitation region’’), symmetric vortex shedding is usually observed, while alternate vortex
shedding is observed in the higher velocity region of Vr42:5 (the ‘‘second excitation region’’).

With regard to the underlying mechanism of the first excitation region, Sarpkaya (1979) remarked that the excitation

force originates from a periodic drag overshoot caused by symmetric vortex shedding, while Naudascher (1987)

associated the fluctuating component of the drag coefficient with a periodic change in the near-wake width

synchronized with the cylinder oscillation (called ‘‘wake breathing’’). As for the second excitation region, it is supposed

that the excitation force mainly results from alternate vortex shedding with lock-in. In order to verify these explanations

of the excitation mechanism, actual measurements of the unsteady drag force on a circular cylinder oscillating in the

streamwise direction are needed, as well as investigations into the wake patterns around these two streamwise instability

regions, particularly under low cylinder amplitude. The reason for this is that the maximum peak amplitude of the

streamwise vibration is less than 0.2d, while the transverse amplitude exceeds 1d.

Tanida et al. (1973) measured the unsteady drag and lift forces on a circular cylinder forced to oscillate in the

streamwise direction at the dimensionless cylinder amplitude A� ¼ A=d of 0.14, where A is a peak amplitude. The

results showed that the component of the fluctuating drag in phase with the cylinder oscillation velocity deviates toward

positive from the quasi-steady value in the velocity range of the streamwise instability, though it always remains

negative. Tanaka et al. (1999) conducted similar measurements at A� ¼ 0:083, and they showed that the added damping
in the streamwise direction declines to slightly negative in the two streamwise excitation regions, though their data were

not sufficient. As for the wake patterns, Ongoren and Rockwell (1988) conducted detailed flow visualizations around a

circular cylinder oscillating in the streamwise direction at A� ¼ 0:13 and at a dimensionless frequency of 0.1–0.8

(Vr ¼ 1:25–10). They classified modes of vortex shedding but did not discuss the relation between the wake patterns and
fluid excitation forces. It should also be noted that, taking the results of Tanida et al. (1973) into account, an amplitude

of A� ¼ 0:13 is probably not small enough for an investigation of the streamwise excitation mechanism.

In addition, recent studies by Khalak and Williamson (1999) and Govardhan and Williamson (2000, 2002), focusing

on the phenomena involved under conditions of a small mass ratio, revealed some interesting characteristics; e.g., the

dynamic response of the transverse vibration depends on the mass ratio due to variation of the added mass, even when

the classical combined mass-damping parameter is the same. As for the streamwise vibration, such added mass effects

have yet to be investigated.

Therefore, further investigations into the unsteady drag force and wake patterns where the cylinder amplitude is as

low as possible are necessary to elucidate the excitation mechanism of the streamwise oscillation.

In this study, precise measurements of fluid forces on a circular cylinder forced to oscillate in the streamwise direction

in a cross-flow, as well as detailed flow visualizations of the wake patterns, were carried out in a water tunnel at

subcritical Reynolds numbers at low cylinder amplitudes. This paper describes characteristics of the fluid forces and

wake patterns in cases of A� ¼ 0:05 and Vr ¼ 1:0–6.0.
2. Experimental details

Our experiments were conducted in a vertical water tunnel of the gravitational draining type, which has been

described in detail by Nishihara et al. (2003). Fig. 1 is a schematic of the water tunnel. It consists of an underground

reservoir of 1700m3, an upper reservoir of 40m3, a vertical water tunnel section and a draining valve. The test-section is

rectangular, 1000mm� 500mm in cross-section. Before the tunnel is operated, water is pumped up from the

underground reservoir to the upper reservoir, with the draining valve closed. Once the upper reservoir has been filled

with water, the valve is opened and the water flows into the test-section by gravity and drains into the underground

reservoir through the valve. The descent rate of the water level in the upper reservoir was correlated to the incident flow

velocity according to preliminary measurements by Laser Doppler velocimetry (DANTEC), and the incident flow

velocity during the fluid force measurements was obtained from the descent rate of the water level. The turbulence

intensity of the incident flow is about 1.5% of the mean flow velocity.

Fig. 2 is a schematic of the test-section and test cylinder. The test cylinder is a circular duralumin tube with a length of

490mm, an outer diameter d of 50mm, and an inner diameter of 38mm. The surface of the cylinder is polished smooth.

The cylinder is forced to vibrate sinusoidally and translationally, only in the streamwise direction at a constant cylinder
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Fig. 1. Vertical water tunnel of gravitational draining type.
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amplitude, by a shaker comprised of a servomotor, an eccentric cam, a crank, slide bearings and a support of phosphor-

bronze. The forcing frequency f can be varied by the rotation speed of the servomotor. The clearance between the

cylinder tip and sidewall is approximately 3–4mm.

Four water-proof strain gauges were attached to the support to form a Wheatstone bridge for measuring the force on

the test cylinder in each of the drag and lift directions. In preliminary calibration tests of the strain gauges, a weight was

hung from the cylinder, and the outputs of strain gauges were correlated to the magnitude of the force on the cylinder

per unit length. The natural frequency of the cantilevered test cylinder is 80Hz in water. It is sufficiently higher than the

forcing frequency f, so that the strain-gauge outputs during the forced-oscillation tests can be directly reduced to the

dynamic force on the cylinder using the results of the static calibration tests. Moreover, the cylinder is supported so

rigidly that its tip deflection amplitude during forced oscillation tests is within several percent of the forced cylinder

amplitude and can thus be neglected. The displacement of the slide bearing on which the support was mounted was

measured by an electrodynamic displacement sensor (Shinko Electronics A22-10C/C, SD-10T/f). The outputs of all

measuring instruments were simultaneously recorded by a digital data recorder (TEAC DR-M3bMK2).

Fig. 3 is a schematic of the arrangement used in the flow visualization tests. Another cylinder and support shown on

the right-hand side of Fig. 3 were used for flow visualization. The outer shape of the cylinder and support is the same as

that used for the fluid force measurements. A fluorescent dye was injected through three dye outlet ports, each with a

diameter of 1.5mm, located in the middle of the cylinder in the spanwise direction as shown in Fig. 3. The injected dye

was advected by the flow around the cylinder and illuminated by a Laser light sheet. The wake patterns visualized by the

dye injection were taken by a high-speed CCD camera (nac, MEMRECAM Ci).

Table 1 shows the experimental conditions. The reduced velocity Vr is defined by Vr ¼ U=ðfdÞ. In the series of the

experiments, the forcing frequency was varied under constant flow velocity, that is for a constant Reynolds number.
3. Preliminary tests for stationary cylinder

Measurements of fluid forces on the stationary test cylinder were preliminarily carried out prior to the forced-

vibration tests. The test results are shown in Table 2, and flow patterns around the stationary cylinder are shown in



ARTICLE IN PRESS

Fig. 3. Schematic of flow-visualization test.

Fig. 2. Schematic of test-section and shaker.
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Fig. 4 for reference in the evaluation of forced oscillation test results, described later. C̄D, St and ~CL are defined as

follows:

C̄D ¼ F̄D=ð12rU2dÞ, (1)

~CL ¼ ~FL=ð12rU2dÞ, (2)

St ¼ f L0d=U , (3)

where U is the incident flow velocity, and r is the fluid density. F̄D is the mean drag per unit length, ~FL is the r.m.s.

amplitude of the dynamic lift per unit length, and f L0 is the dominant frequency of dynamic lift on the stationary

cylinder.
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Table 2

Characteristics of fluid forces on the stationary test cylinder

Reynolds number, Re 1:7� 104 3:4� 104

Steady drag coefficient, C̄D 1.10 1.01

Strouhal number, St 0.184 0.182

Dynamic lift coefficient ~CL 0.038 0.064

Fig. 4. Flow around stationary cylinder: (a) wake pattern; (b) close-up view of shear layer. Re ¼ 1:7� 104.

Table 1

Experimental conditions

Flow velocity (m/s) 0.44 0.87

Forced frequency (Hz) 2.2–9.0 2.9–14.5

Reynolds number, Re 1:7� 104 3:4� 104

Reduced velocity, Vr 1.0–4.0 1.2–6.0

Forced amplitude, A� 0.05
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A typical asymmetric wake pattern can be seen in Fig. 4(a) with shear layer transition as shown in Fig. 4(b). They are

reasonable flow patterns for this Reynolds number. Compared with the measurements by several researchers

(Zdravkovich, 1997), the values of C̄D and St are also reasonable, but the values of ~CL are rather small. The values of
~CL seem to agree with those of oblique vortex shedding, rather than those of parallel vortex shedding (Khalak and

Williamson, 1996), and this is probably ascribable to end-effects.
4. Results of forced oscillation tests

In this section, the measurement results of fluid forces on the cylinder oscillated forcibly in the streamwise direction

are described. Basic characteristics of the wake patterns and fluctuating lift of the test cylinder are described in Section

4.1. Characteristics of the unsteady drag force are shown in Section 4.2.

4.1. Fluctuating lift and wake patterns

Fig. 5 shows typical timetraces of the lift coefficient CLðtÞ ¼ FLðtÞ= 1
2
rU2d, where FLðtÞ is lift force per unit cylinder

length. Fig. 6 shows the dimensionless frequency f L=f and the fluctuating lift coefficients ~CL versus Vr at A� ¼ 0:05,
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Fig. 5. Timetraces of lift coefficient CLðtÞ ¼ FLðtÞ= 1
2
rU2d at Re ¼ 3.4�104: (a) Vr ¼ 1:7, (b) V r ¼ 2:2, (c) Vr ¼ 2:9, (d) V r ¼ 3:1, (e)

Vr ¼ 4:0 and (f) V r ¼ 5:0.
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where f L is the dominant frequency of the fluctuating lift, and ~CL is calculated by Eq. (2). It is seen that f L=f is constant

at 0.5 in the range of Vr ¼ 2:5–3.7, that is, f L is synchronized with 1
2

f . Within the lock-in range, ~CL increases

significantly, compared with that in the stationary cylinder.

Typical wake patterns at A� ¼ 0:05 are shown in Fig. 7. All of these photographs were taken at the moment the

cylinder was in the most downstream position. Depending on Vr, various wake patterns can be observed, and the

vortex-shedding modes at A� ¼ 0:05 do not markedly differ from those obtained by Ongoren and Rockwell (1988) at

A� ¼ 0:13. As described by Ongoren and Rockwell (1988), they can be basically classified into a symmetric mode of

vortex shedding, an asymmetric mode, and competition of the two modes.

A symmetric mode of vortex shedding is dominant in the near-wake region at Vrp1:7, and the disposition of the

vortices is gradually rearranged to be asymmetric as they are advected downstream. At Vr ¼ 2:2, peripatetic switches of
the vortex-shedding mode between a symmetric mode and an asymmetric mode is observed. At Vr ¼ 2:5 and 2.7, a well-
organized asymmetric mode of vortex shedding is observed, which largely corresponds with the ~CL increases, and f L is

locked on 1
2

f . At Vr ¼ 3:1 and 3.5, an asymmetric mode of vortex shedding is rather dominant but is less obvious than
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Fig. 6. Characteristics of fluctuating lift at A� ¼ 0.05. (a) Dimensionless dominant frequency f L=f . (b) Fluctuating lift coefficient ~CL.

Reynolds number: � 	 �; 1:7� 104; � 
 �; 3:4� 104.
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in the case of Vr ¼ 2:5 and 2.7. At VrX4:0, where it is out of the lock-in range, the wake pattern is similar to that

around the stationary cylinder. Therefore, these wake patterns are in good accord with the characteristics of the

measured fluctuating lift.

Thus, we have confirmed that reasonable results can be obtained by the present experimental apparatus with regard

to the fluctuating lift and wake patterns.
4.2. Unsteady drag force

Here we describe the characteristics of the unsteady drag force on the cylinder oscillated in the streamwise direction,

which is the main objective of this study.

The mean drag coefficient C̄D and unsteady drag coefficient ~CD are calculated from the measured drag force by the

following procedure. The output of strain gauges used for drag measurement during the forced oscillation tests is

reduced to a force per unit length, F, according to the preliminary calibration tests. The force obtained, F, is

decomposed into a time-averaged value F̄D and a fluctuating component ~F ,

F ¼ F̄D þ ~F . (4)

The mean drag coefficient C̄D is defined by Eq. (1).

As for the fluctuating component ~F , a cross-spectral analysis between ~F and the oscillating displacement x of the

cylinder measured by the electrodynamic displacement sensor is conducted to calculate the Fourier-averaged in-phase-

with-x component, FR, and the out-of-phase component, FI . That is, when the cylinder is oscillating sinusoidally with

an amplitude A and an angular frequency o ¼ 2pf ,

x ¼ Aeiot, ð5Þ

~Fe ¼ ðFR þ iFI Þe
iot, ð6Þ

where ~Fe is the fluctuating force synchronized with x. Since FR includes an inertia force FR0 originating from the

cylinder mass, FR0 is deducted from FR to calculate the in-phase component, FM , of the unsteady fluid drag on
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Fig. 7. Typical wake patterns at A� ¼ 0.05. Re¼ 1:7� 104.

T. Nishihara et al. / Journal of Fluids and Structures 20 (2005) 505–518512
the cylinder as follows:

FM ¼ FR � FR0. (7)

FR0 was estimated by the preliminary forced-oscillation tests in the air.

The unsteady fluid drag ~FD is then expressed as

~FD ¼ ðFM þ iFI Þe
iot. (8)
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Fig. 8. Unsteady drag coefficient at A� ¼ 0.05. Reynolds number: � 	 �; 1:7� 104; � 
 �; 3:4� 104.
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The unsteady drag coefficient ~CD is defined as a complex number by the following equation:

~CD ¼ ðFM þ iFI Þ=ð12rU2dÞ. (9)

The results of ~CD at A� ¼ 0:05 are shown in Fig. 8, where c is the phase of ~CD. The amplitude of ~CD decreases as Vr

increases, because ~CD includes the inertia force component due to added mass and ~CD originates mainly from the

inertia force in the low Vr range. The phase c of ~CD is slightly negative at Vro1:5, that is, the unsteady drag acts on the
cylinder as a positive damping force. At Vr ¼ 1:5, c passes zero to become positive, which indicates that the unsteady

drag force on the oscillating cylinder changes from being a damping force to an excitation force. As Vr increases, c rises

to approximately 20	 around Vr ¼ 2:2 and begins to decline. After c falls to almost zero at Vr ¼ 2:7, c begins to

increase again, and it reaches its maximum around Vr ¼ 3:3–3.5. With further increases of Vr, c rapidly drops to be

almost �90	. The results at Re ¼ 1:7� 104 and 3:4� 104 do not markedly differ from each other.

Hence, it is clearly shown that two reduced-velocity ranges exist where c is positive. The two ranges agree with the

two streamwise excitation regions observed in the free-oscillation tests in several previous studies (King et al., 1973;

Okajima et al., 2002).
5. Discussion

5.1. Added mass and added damping coefficients

As has been described, the present measurement results confirmed that two excitation regions exist in the unsteady

drag force. With the expression of ~CD, however, it is not easy to understand how these properties of the unsteady drag

force correspond with the dynamic response of the streamwise free oscillation described in previous studies, and how

they quantitatively affect the freely oscillating cylinder. Thus, here we introduce the added mass and added damping

coefficients.
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The equation of motion of an elastically supported rigid cylinder oscillating freely in an infinite and uniform cross-

flow is expressed by the following equation:

ms €x þ cs _x þ ksx ¼ ~FD, (10)

where ms, cs and ks are the structural mass per unit length, structural damping, and spring constant, respectively. In

general, the unsteady fluid force ~FD is expressed as

~FD ¼ �ma €x � ca _x � kax. (11)

When the cylinder continues to vibrate at a constant amplitude A and an angular frequency o as x ¼ Aeiot, �kax can

be expressed as ka €x=o2. Therefore, Eq. (11) can also be expressed as

~FD ¼ �m0
a €x � ca _x. (12)

Either Eq. (11) or Eq. (12) can be used. For this problem, however, it is not suitable to introduce the added stiffness

term �kax, since the displacement of the rigid cylinder does not vary the geometry of the flow boundary or flow path,

unlike in the cases of a tube bundle and a body near a wall. It is therefore appropriate to use Eq. (12) in this study. Eq.

(10) can then be arranged as

Real part: ðms þ m0
aÞo

2 ¼ ks, ð13Þ

Imaginary part: ðcs þ caÞo ¼ 0. ð14Þ

Comparing Eq. (8) with Eq. (12), the following equations are obtained:

m0
a ¼ FM=fo2Ag, ð15Þ

ca ¼ �FI=foAg. ð16Þ

The in-phase component FM is thus reduced to the added mass; m0
a is sometimes called the effective added mass

(Govardhan and Williamson, 2000, 2002).

The added mass coefficient CM is then defined as follows:

CM ¼ m0
a=ma0, (17)

where ma0 is the displaced fluid mass prd2=4.
As for ca, taking Eq. (13) into account, Eq. (14) is converted to the following equation:

4pzsmbðmÞ þ Ca ¼ 0, (18)

where m, zs, b and Ca are given by

m ¼
ms þ ma0

rd2
, ð19Þ

zs ¼
cs

2
ffiffiffiffiffiffiffiffiffiffi
msks

p , ð20Þ

bðmÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

p
4m

� �
1þ

pðCM � 1Þ

4m

� �s
, ð21Þ

Ca ¼
ca

rd2f
. ð22Þ

In the above, 4pzsm is the classical reduced damping (King et al., 1973; Blevins, 1990). Ca is the dimensionless added

damping coefficient, which depends on Re, A�, and Vr defined using the actual oscillation frequency f; b is a function of
the mass ratio m and expresses the effect of frequency variations due to added mass. It should be kept in mind that the

classical reduced damping 4pzsm is not exactly equal to �Ca in Eq. (18). Only when the mass ratio m is high enough does
b become almost 1, and 4pzsm become equal to �Ca. Additionally, cs is treated as a constant in the formulation above,

while the formulation also depends on structural damping. How to determine the damping ratio was thoroughly

discussed by Sarpkaya (1979) and Nakamura et al. (2001).

Fig. 9 shows the calculated CM and Ca along with the mean drag coefficient C̄D on the basis of the present

measurement.

Though CM is almost 1 at Vrp2, it decreases gradually as Vr increases, becoming almost 0 at VrX3:7. As for the
transverse vibration, Sarpkaya (1979) indicated that CM in a steady flow is no longer the same as in a still fluid.

Govardhan and Williamson (2002) confirmed that the variations in CM play an important role in the dynamic response

of VIV in the transverse direction under low mass-ratio conditions. The present results clearly show that CM for the
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Fig. 9. Added mass and added damping coefficients along with mean drag coefficient. Reynolds number: � 	 �; 1:7� 104;

� 
 �; 3:4� 104. Broken line: quasi-steady value at Re¼ 1:7� 104. Solid line: quasi-steady value at Re¼ 3:4� 104.
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streamwise vibration also varies greatly depending on Vr, and that may affect the dynamic behavior of the streamwise

vibration in a similar way as for transverse vibration. For example, Aguirre (1977) observed that the actual frequency of

the streamwise vibration tends to be higher than the natural frequency in still fluid. Such a phenomenon can reasonably

be explained by the variation of CM .

Two Vr ranges with negative Ca exist, which correspond with the two excitation regions for streamwise free-

vibrations previously reported. With regard to the first excitation region, the maximum absolute value of Ca is

approximately 1.0. This agrees well quantitatively with the results of free-oscillation tests by Okajima et al. (2002) that

the maximum of the r.m.s dimensionless amplitude of cylinder displacement becomes larger than 3.5% when 4pzsm is

less than approximately 1.0. As for the second excitation region, the maximum absolute value of Ca is approximately

0.9. According to the free-vibration tests by Okajima et al. (2001) and Nakamura et al. (2001), the response amplitude

in the second excitation region depends on the support conditions, the aspect ratio and the end effect. The maximum

r.m.s. amplitude in the second excitation region is larger than that in the first excitation region and remains at 6% when

4pzsm is less than approximately 1.0 for a circular cylinder supported elastically at both ends. For a cantilevered circular
cylinder, the maximum r.m.s. amplitude in the second excitation region is lower than that in the first excitation region.

Considering the aforementioned results by Okajima et al. (2001) and Nakamura et al. (2001), the maximum absolute

value of Ca in the second excitation region obtained by the present forced-oscillation tests is also reasonable.
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The broken line in the graph shows the fluid damping effect C̄DVr based on quasi-steady theory. The graph clearly

shows that Ca becomes close to the quasi-steady value where Vr is higher than 4.

5.2. Comparison between added damping coefficient and wake patterns

As described in Section 5.1, we have confirmed that the Ca obtained by the present experiments is quantitatively

reasonable. Next, the relation between the wake patterns and the unsteady drag force is discussed.

Fig. 10 shows the transitions of wake patterns in the near wake during one cycle of cylinder oscillation.

Fig. 10(a) shows the transition of the wake patterns during one cycle of cylinder oscillation at Vr ¼ 1:7. Such wake

motions are called the ‘‘wake breathing’’, and a pair of symmetric vortices is shed as the cylinder moves upstream.

Naudascher (1987) explained that the excitation force in the streamwise direction originates from a periodic change in

the near-wake width synchronized with the cylinder oscillation, while Sarpkaya (1979) remarked that the excitation

force originates from a periodic drag overshoot caused by symmetric vortex shedding. Though there is room for

argument on which explanation is more reasonable, the present results of the forced-vibration tests have confirmed that

such wake motions generate an excitation force at any rate.

Fig. 10(b) shows the transition of the wake patterns during an oscillation cycle at Vr ¼ 2:7. As shown in Fig. 9, Ca

reaches its local maximum at Vr � 2:7. The narrow range between the first and second excitation regions corresponds
Fig. 10. Transitions of wake patterns at Re¼ 1:7� 104: (a) Vr ¼ 1:7, (b) Vr ¼ 2:7, (c) V r ¼ 3:1, (d) Vr ¼ 4:0 and (e) Vr ¼ 5:0.
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to the drop in the response amplitude of the streamwise vibration in the free-oscillation tests, as reported by King et al.

(1973) and Okajima et al. (2002). Naudascher (1987) reported that the sudden drop in the response amplitude of the

streamwise vibration is due to incompatibility of the two vortex-shedding modes. As shown in Fig. 10(b), however,

alternate vortex shedding is observed most clearly at Vr ¼ 2:7. One separated shear layer is drawn toward the rear of

the cylinder, and begins to roll up and form a vortex as the cylinder moves upstream. The vortex formed remains in the

rear of the cylinder as the cylinder moves downstream and is advected downstream as the cylinder moves upstream.

These wake motions seem to generate a streamwise excitation force, because they increase the drag force as the cylinder

moves downstream and vice versa. On the contrary, the present results show that the excitation force diminishes (where

Ca reaches its local maximum) at Vr ¼ 2:7, i.e., the excitation force diminishes at the classical resonance condition of

f � 2f L0.

Fig. 10(c) shows the transition of the wake patterns during an oscillation cycle at Vr ¼ 3:1, where Ca has its local

minimum. In the second excitation region, alternate vortex shedding is usually observed in free-oscillation tests. In the

present forced-oscillation tests, asymmetric vortex shedding is rather dominant, but is less obvious at Vr ¼ 3:1 than in

the case of Vr ¼ 2:7. It may be proper to describe the transition of wake patterns as a combination of the wake

breathing and alternate vortex shedding.

Figs. 10(d) and (e) show the transitions of the wake patterns during an oscillation cycle at Vr ¼ 4:0 and 5.0,

respectively. Though the wake width decreases slightly as the cylinder moves upstream, the motion of the separated

shear layer is limited in the near wake, i.e. there is little change in the instantaneous flow patter. In such cases, the

characteristics of the drag force can be considered as in quasi-steady theory. In fact, Ca obtained by the present

measurements becomes close to the quasi-steady value at VrX4:0.
Therefore, the results of the present experiments in the first excitation region are consistent with the results of

previous free-vibration tests and the description of the phenomenon in previous reports by other researchers. The wake

patterns for VrX4 are also consistent with the results of the fluid force measurements. However, flow patterns in the

second excitation region and the narrow range between the first and second excitation regions do not seem to be

consistent with the characteristics of Ca at first glance. The reason for this is probably related with the mean drag

coefficient C̄D. It is noted that C̄D attains its maximum where Ca reaches its local maximum, as shown in Fig. 9.

Naudascher and Rockwell (1994) remarked that whether the unsteady drag force acts on a cylinder as an excitation

force or as a damping force depends on the relative magnitudes of two opposite effects. The first is the excitation force

induced by the motion of the separated shear layer and vortices synchronized with the cylinder motion. The second is

fluid damping originating from the relative velocity change between the cylinder and fluid. The correspondence between

Ca and C̄D at Vr � 2:7 in the present experiments implies that the increase in C̄D magnifies the second effect in the

narrow range between the first and second excitation regions. That is, the second effect is magnified by the increase in

C̄D and overcomes the first effect in this narrow Vr range, though the well-organized alternate vortex shedding also

generates the first effect.
6. Conclusion

Precise measurements of fluid forces on a circular cylinder forced to oscillate in the streamwise direction in a cross-

flow as well as detailed flow visualization of the wake patterns were carried out in a water tunnel at subcritical Reynolds

numbers at low cylinder amplitude. The added mass and damping coefficients were estimated based on the

measurement results.

The results of the forced-oscillation tests confirmed that two reduced-velocity ranges with negative added damping

exist, which agrees well with the two streamwise excitation regions observed in the free-oscillation tests in several

previous studies. The flow visualization tests confirmed that wake breathing and typical symmetric vortex shedding are

observed in the first excitation region, whereas the combined flow patterns of wake breathing and asymmetric vortex

shedding appear in the second excitation region. The maximum absolute values of added damping coefficient in the first

and second excitation regions are also quantitatively reasonable, compared to the free-vibration test results by other

researchers.

A well-organized alternate vortex shedding is observed most clearly when the forcing frequency f is approximately

twice the natural vortex-shedding frequency f L0. Though such vortex motions seem to generate an excitation force, the

added damping coefficient reaches its local maximum at f � 2f L0. The reason for this is probably related to the mean

drag coefficient. The mean drag coefficient also reaches its maximum at f � 2f L0, which implies that the increase in the

mean drag coefficient magnifies the fluid damping effect originating from the relative velocity change between the

cylinder and the fluid.
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The added damping coefficient becomes close to the quasi-steady value when the reduced velocity is higher than 4.0.

This is consistent with the wake patterns showing that the motion of the separated shear layers in the near wake is

limited.

Furthermore, the added mass coefficient varies greatly, depending on the reduced velocity, and gradually decreases as

the reduced velocity increases, becoming almost zero where the reduced velocity is higher than 3.7. The variation of the

added mass coefficient can affect the dynamic response of the streamwise vibration especially under low mass-ratio

conditions.
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